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Anomalous phase synchronization in populations of nonidentical oscillators
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We report the phenomenon of anomalous phase synchronization in interacting oscillator systems with ran-
domly distributed parameters. We show that coupling is first able to enlarge the frequency disorder leading to
maximal decoherence for intermediate levels of coupling strength before reaching synchronization. Anomalous
synchronization arises when the natural frequency covaries with nonisochronicity and allows for synchroniza-
tion control by adjustment of system parameters.
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The study of interacting oscillator systems is one of
fundamental problems in nonlinear dynamics@1,2#. In prac-
tice, it is inevitable that the oscillators are nonidentical a
vary in their natural frequencies. Of special interest is
phenomenon of phase synchronization in which coupling
overcome the dispersal of natural frequencies and the o
lators are mutually entrained to a common locking freque
@3#. Phase synchronization is an ubiquitous phenomenon
arises in many areas of physics and living systems. It
been observed in coupled pairs of oscillators, in one- or tw
dimensional lattices and in ensembles of globally coup
limit cycle @4# and chaotic oscillators@5,6#. Biological ex-
amples include synchronous flashing fireflies@7#, neural net-
works @8#, the cardiorespiratory system@9#, and oscillating
population numbers@6,10#. Usually, the interaction leads t
locking of the oscillator frequencies, but coupling may ha
different effects including oscillation death@11,12#, desyn-
chronization via short-wavelength bifurcation@13#, or
dephasing with bursts of amplitude change@14#.

In this paper we investigate the effect of weak interact
on the frequency distribution in a set of nonidentical oscil
tors. We show that the usual transition to phase synchron
tion can be strongly modified when the disorder is affect
two characteristics of the system simultaneously. Under th
assumptions, we show a mechanism for coupling indu
desynchronization where the interaction does not imme
ately lead to an increase of synchrony in the network bu
first able to enlarge the natural frequency disorder. This p
nomenon appears universally when nonisochronicity
natural frequency of the oscillators have a positive cov
ance. The effect is of potential use for engineering appli
tions because it allows for synchronization control: with
appropriate choice of oscillator parameters it is possible
either enhance or inhibit the synchronization in the e
semble. Similar strategies can easily be used in living s
tems and therefore the effect is of considerable importanc
a variety of physical and biological applications.

We consider a system ofN coupled oscillators

ẋi5F~xi ,x i !1
e

m
C (

j PNi

~xj2xi !, i 51���N. ~1!

In the absence of coupling each autonomous oscillatoxi

PRn follows its own local dynamicsẋi5F(xi ,x i), which we
assume to be either a limit cycle or phase coherent ch
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Accordingly, each oscillator is characterized by a we

defined natural frequencyv i5 ū̇ i(t) given as the long time
average of phase velocity@3#.

Quenched disorder is imposed onto the system by ass
ing to each oscillatori an independent set of control param
etersx i5(ai ,bi . . . ) which affect the natural frequencyv i
5v(x i). This natural disorder in control parameters leads
a frequency mismatch between the oscillators, which we a
refer to as frequency disorder. The oscillators are th
coupled with strengthe over a predefined setNi of m
neighbors and using the diagonal coupling mat
C5diag(c1 ,c2 , . . . ,cn).

Synchronization then arises as an interplay of the inter
tion and the frequency mismatch between the oscillato
Thereby, in general, all frequenciesV i5V i(e) will be de-
tuned from the natural frequency, i.e.,v i5V i(0). It is con-
venient to measure the amount of synchronization with
standard deviation of all oscillator frequencies,s(e). Phase
synchronization refers to the fact that with sufficient co
pling strengthe.ec all oscillators rotate with the same fre
quency and impliess(e)50.

We start by comparing the transition to synchronization
ensembles of two phase coherent chaotic oscillators, nam
the Rössler system@5#

ẋ52biyi2zi , ẏ5bixi1aiyi , ż50.41~xi28.5!zi
~2!

and the following chaotic predator-prey model that has b
introduced in Ref.@6# to describe large scale synchronizatio
effects in ecological systems:

ẋ5xi21.520.1xiyi , ẏ52biyi10.1xiyi20.6yizi

ż5210zi10.110.6yizi . ~3!

Both systems have a free parameterbi which is taken for
each oscillator from the same statistical distribution. Desp
the fact that both models have a very similar attractor top
ogy @6#, we find fundamental differences in their response
the interaction~see Fig. 1!. In the ensemble of Ro¨ssler sys-
tems we observe the usual onset of synchronization wh
the frequency disorders(e) is a monotonically decreasin
function of coupling strength. In contrast, the ensemble
foodweb models~3! shows a totally different behavior. Here
©2003 The American Physical Society04-1
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with increasing coupling strengths(e) is first amplified and
synchronization sets in only for much larger coupling with
maximal decoherence for intermediate values ofe. We de-
note this counterintuitive increase of disorder with coupli
strength asanomalous phase synchronization~APS!. Note,
that here dephasing sets in without threshold, which diff
totally from other coupling induced effects where instab
ties arise only when coupling exceeds a critical level@11#.

We have tested the robustness of APS in a large num
of numerical simulations. We have found APS in the ecolo
cal model~3! for various coupling topologies~one- and two-
dimensional lattices or global coupling! and for different en-
semble sizes. In general, coupling induced decoherenc
more distinct with a larger number of oscillators,N, or next
neighborsm. It can already be observed in two coupled o
cillators. APS appears when disorder is realized by vari
statistical distributions, largely independent of the width
the dispersal, and it retains also in chains with linearly
creasing parametersbi . Furthermore, the effect is robust t
the presence of noise and is independent of the initial co
tions.

In the limit of weak interactions the dynamics of syste
~1! can be written in the form of phase equations

u̇ i5v i1
e

m (
j PNi

G i j ~u j2u i !, ~4!

where the interaction functionG i j is given by@2,12,15#

G i j ~Du i j !5
1

2pEf50

2p

Zi~q!pi j ~q,Du i j !dq. ~5!

Here, pi j (q,du) describes the perturbation of the state
oscillatori with phaseq due to the interaction with oscillato
j at phaseq1Du, and the sensitivity vectorZi(q) gives the
phase shift of oscillatori after the perturbation.

We first explain APS for an ensemble of globally coupl
Landau-Stuart oscillatorsas a widely studied canonica
model for weakly nonlinear limit-cycle systems@2,4,12#

FIG. 1. Standard deviation of frequenciess(e) in a population
of 500 coupled oscillators;~a! Rössler system~2! with ai50.15 and
~b! foodweb model~3!. Oscillators have been coupled in they vari-
able,C5diag(0,1,0), with strengthe to either next neighbors in a
ring with periodic boundaries~solid line!, with global coupling
~dashed line!, or using approximation~14! ~dotted line!. Parameters
bi were taken as uniformly distributed random numbers in the ra
0.9760.025. The phase evolution of each oscillator was determi
by counting the maxima ofyi(t) @5#.
03520
s

er
i-

is

-
s
f
-

i-

f

żi5~11 ih i !zi2~11 ia i !uzi u2zi1
e

N (
j

~zj2zi !. ~6!

Rewriting the complex variablezi in polar coordinates
(r i ,u i) and considering weak disorder, Eq.~6! becomes

ṙ i5r i~12r i
2!1

e

N
r i(

j
@cos~u j2u i !21#,

u̇ i5h i2a i r i
21

e

N (
j

sin~u j2u i !. ~7!

Here, the natural frequencyv i is determined by the dif-
ference of the amplitude independent rotation speedh i and
an amplitude dependent terma i r i

2 that reflects the nonisoch
ronicity or shear of phase flow around the limit cycle@2#.
After relaxation of amplitudes the system can be written
the generic form ~4! with G i j (u j2u i)5sin(uj2ui)1ai@1
2cos(uj2ui)# andv i5h i2a i .

Assuming for smalle that the oscillators rotate indepen
dently we can approximate( jcos(uj2ui)'(jsin(uj2ui)'0.
Thus, we arrive atṙ i5r i(12r i

2)2er i and the amplitude, on
average, is perturbed tor i

2512e. As a result, the mean
frequency becomes a function of coupling strength

V i~e!5h i2a i~12e!5v i1ea i . ~8!

It is important to note that Eq.~6! has to be understood a
an effective equation that describes the amplitude and ph
dynamics of the specific system~1! with two characteristic
constantsv i and a i , which, in general, will both be func-
tions of the system parametersv i5v(x i) and a i5a(x i).
As a consequence,a i and v i are implicitly related a i
5a i(v i) and thus can not be treated as independent par
eters. After simple calculation we obtain the standard dev
tion of the ensemble frequencies in Eq.~8!,

s~e!5sv1
e

sv
Cov~v i ,a i !1O~e2!, ~9!

where sv is the standard deviation ofv i . Here, the fre-
quency disorder up to first order ine increases with the co
variance of natural frequency and nonisochronicity of all o
cillators in the ensemble. Thus, we expect an anomal
enlargement whena i increases withv i .

For a small range of frequencies we can linearize the
lation a i(v i) in first order

a i5a~v i !5kv i1ã. ~10!

The coefficientk measures the relation between nonisoch
nicity and natural frequency. Now, Eq.~9! becomes

s~e!5~11ke!sv1O~e2!. ~11!

Figure 2 illustrates these results with a numerical simu
tion of ten coupled oscillators~6! where the disorder ha
been distributed according to Eq.~10!. If k50, the system
shows the usual transition to synchronization, i.e., with
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FIG. 2. Transition to synchronization in a
ensemble of ten globally coupled Landau-Stu
oscillators ~6! with a i5k(v i2^v i&)1^v i& and
v i5160.125. ~Left! k53, anomalous synchro
nization; ~center! k50, usual synchronization
~right! k523, enhanced synchronization.~Top!
Standard deviation of the ensemble frequenc
s(e); numerical simulation~solid line! and ana-
lytical result~11! ~dashed line!. Further indicated
is the amplitude of the complex order parame
R ~dotted line!. ~Bottom! frequenciesV i(e) of
individual oscillators.
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anomalous behavior. However, when nonisochronicity a
natural frequency are related,kÞ0, the system exhibits APS
similar to the chaotic foodweb model~3!. The mechanism is
obvious from Fig. 2, where for smalle the frequenciesV i(e)
change linearly withe ~8!, with a slopea i(v i) that depends
on the natural frequency. Thus, ifk.0 anda i increases with
v i we first observe an effective enlargement of the freque
differences@see Fig. 2~a!#. In contrast, ifk,0, the opposite
effect happens and synchronization is immediately stron
enhanced.

Despite the fact that Eq.~11! has been derived for ver
small e, APS prevails in the large coupling regime. As
consequence, in Fig. 2 the synchronization thresholdec
changes significantly withk, a fact that is also reflected b
the amplitude of the complex order parameterR5u^eiu j&u
@2#.

In the case of only two phase oscillators~6!, the full tran-
sition to synchronization can be described analytically. Af
relaxation of amplitudes in Eq.~7! the phase differencef
5u22u1 is determined by@12#

ḟ5Dv2e@2 sinf1Da~cosf21!#. ~12!

Then the mean frequency difference can be calculate
DV5^ḟ&5(1/2p*0

2pdf/ḟ)21, which results in

DV~e!5ADv212eDvDa24e2. ~13!

For Da50 this expression reduces to the well known b
frequency of two coupled phase oscillators. However, wh
both oscillators differ in nonisochronicity, Eq.~13! exhibits
APS in very good agreement with the numerical simulatio
~Fig. 3!.

After these explanations for universal limit cycle mode
we return to the general, possibly chaotic, system~1!. Using
similar ideas, we can describe the frequency disorder in
regime of weak global coupling. First note that in the a
sence of coupling the oscillators are rotating independe
of each other. With the onset of weak coupling we can
sume that the oscillators remain to be independent. Thus
e!1 and in the thermodynamic limit the ensemble avera
is constant in time,̂ xj&5j, and we can approximate th
interacting system as a system ofN uncoupled oscillators
with modified dynamics
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ẋi5F~xi ,x i !2eC~xi2j!. ~14!

Consequently, fore!1 the frequency detuning of each o
cillator i depends only on its own parametersx i ,

V i5V~x i ,e!'v~x i !1ek~x i !1O~e2!. ~15!

Here,k(x i) describes the frequency response of each os
lator to the onset of interaction and by comparison with E
~8! it can be identified with the nonisochronicitya i in
weakly nonlinear systems. Another way to derive Eq.~15!
stems from Eq.~4! where again using a random phase a
proximation and after averaging we find fore!1,

k~x i !5
1

m (
j PNi

1

2pE0

2p

G i j ~Du j i !dDu j i . ~16!

Thus, in principle, the characteristicsv i and k i can be
calculated from the basic equations~1! and these are given a
functions of the control parameters of the system

F:S→R2, x i°�v~x i !,k~x i !�. ~17!

Here,S#Rl denotes the parameter space for each individ
oscillator andx i5(ai ,bi , . . . ). Thecrucial fact is that, in
general,v(x i) and k(x i) are not functionally independen
In analogy to Eq.~9! the frequency disorder is determined b

FIG. 3. Left: Frequency difference of two coupled phase os
lators~6! as a function of coupling strength for different values ok
when Da5kDv (v151.2,v150.8). Solid line: analytical result
~13!. Dotted line: numerical simulation. Right: synchronizatio
thresholdec as a function ofk. Solid line: analytical result. Circles
numerical result.
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the covariance betweenv i andk i in the ensemble. If in the
whole disordered ensemble the parameters are distribute
a subsetS,S, then anomalous enlargement appears
Cov@F(S)#.0.

Following these ideas, we now show that anomalous
havior can arise in the ensemble of Ro¨ssler systems~2!. Re-
call that by varying only thebi anomalies are absent~Fig. 1!.
Now we allow also for variations in the second paramet
ai . The problem then is to distribute the disorder in suc
way among system parameters thatv i and k i are both in-
creasing or decreasing functions ofx i . In the simplest sce-
nario we demand thatai and bi are linearly related byai
2^a&5k(bi2^b&). Thus varyingk, we effectively try dif-
ferent directions in parameter space. And indeed as is sh
in ~Fig. 4! we observe anomalous synchronization fork
.0, usual synchronization fork50, and enhanced synchro
nization fork,0.

In conclusion, we have described the effect of anomal
phase synchronization in ensembles of nonidentical osc
tors where the usual transition to synchronization is stron
modified, either enhancing or inhibiting synchrony. APS a
pears because the interaction perturbs the oscillators a
from their attractors. This brings the nonisochronicity of o
cillation into play. Disorder enlargement occurs if nonisoc
ronicity covaries with the natural frequency. APS is also r
evant in the large coupling regime and strongly controls
synchronization threshold. Thus, the effect is important
applications. Similar to Fig. 4, an experimentalist can mod
the synchronization properties of a given system if he has
freedom to adjust individual oscillator parameters.

Beyond its importance for the theory of synchronizatio
APS has wider implications for biological systems that a
typically characterized by large amounts of inherent disord
In many cases strong synchronization is desirable for b
logical reasons@3#. Therefore, it is quite possible that evolu
tion has made use of APS by selecting individuals with c
ce

s

03520
in
if

e-

s
a

n

s
a-
ly
-
ay
-
-
-
e
r
y
e

,
e
r.
-

-

related system parameters to speed up synchronization a
compensate for the natural heterogeneity of all living en
ronments. On the other hand, there are situations where
chronization is regarded as dangerous. For example,
known that synchronization of fluctuating population num
bers is strongly connected to the risk of global species
tinction @10#. In this respect the anomalous synchrony in
bition in ecological models has important consequences
conservation ecology.
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FIG. 4. Possibility of anomalous behavior in the Ro¨ssler system
which is achieved by simultaneous variation of two paramete
Plotted is the frequency disorders(e) as a function of coupling
strengthe in an ensemble of 500 globally coupled Ro¨ssler oscilla-
tors ~solid lines! and using approximation~14! ~dotted lines!. Pa-
rameter valuesbi are taken as in Fig. 1 andai5k(bi2^b&)1^a&
with ^b&50.97 and̂ a&50.15.
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