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Anomalous phase synchronization in populations of nonidentical oscillators
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We report the phenomenon of anomalous phase synchronization in interacting oscillator systems with ran-
domly distributed parameters. We show that coupling is first able to enlarge the frequency disorder leading to

maximal decoherence for intermediate levels of coup

ling strength before reaching synchronization. Anomalous

synchronization arises when the natural frequency covaries with nonisochronicity and allows for synchroniza-

tion control by adjustment of system parameters.
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The study of interacting oscillator systems is one of theAccordingly, each oscillator is characterized by a well-

fundamental problems in nonlinear dynamjds2]. In prac-

defined natural frequencgosgi(t) given as the long time

tice, it is inevitable that the oscillators are nonidentical a”daverage of phase velocifg].

vary in their natural frequencies. Qf special_ interest_ is the Quenched disorder is imposed onto the system by assign-
phenomenon of phase synchronization in which coupling caf,q 15 each oscillator an independent set of control param-

overcome the dispersal of natural frequencies and the oscié—ters)(_: (a,b
lators are mutually entrained to a common locking frequency_ ' L
[3]. Phase synchronization is an ubiquitous phenomenon ang

arises in many areas of physics and living systems.

dimensional lattices and in ensembles of globally couple
limit cycle [4] and chaotic oscillator§5,6]. Biological ex-
amples include synchronous flashing firefli@$ neural net-
works [8], the cardiorespiratory systef®], and oscillating
population number$6,10]. Usually, the interaction leads to
locking of the oscillator frequencies, but coupling may have,
different effects including oscillation deafi1,12, desyn-
chronization via short-wavelength bifurcatiofl3], or
dephasing with bursts of amplitude charigd].

In this paper we investigate the effect of weak interaction
on the frequency distribution in a set of nonidentical oscilla-

tors. We show that the usual transition to phase synchroniza*

tion can be strongly modified when the disorder is affecting

two characteristics of the system simultaneously. Under thes(t(ﬁe Rissler systenfs]
desynchronization where the interaction does not immedi-
ately lead to an increase of synchrony in the network but is
first able to enlarge the natural frequency disorder. This phe-

assumptions, we show a mechanism for coupling induce

i ... ) which affect the natural frequenay;
o(x;)- This natural disorder in control parameters leads to
frequency mismatch between the oscillators, which we also

. : . : It h‘""ﬁefer to as frequency disorder. The oscillators are then
been observed in coupled pairs of oscillators, in one- or two-

oupled with strengthe over a predefined sel; of m
eighbors and wusing the diagonal coupling matrix
C=diag(c;,Cy, . .. ,Cp)-

Synchronization then arises as an interplay of the interac-
tion and the frequency mismatch between the oscillators.
Thereby, in general, all frequenci€s=;(e) will be de-
tuned from the natural frequency, i.e;,=,(0). It is con-
venient to measure the amount of synchronization with the
standard deviation of all oscillator frequencieg,e). Phase
synchronization refers to the fact that with sufficient cou-
pling strengthe> €. all oscillators rotate with the same fre-
quency and impliesr(€)=0.

We start by comparing the transition to synchronization in
ensembles of two phase coherent chaotic oscillators, namely,

5(=—biyi—zi, y=bixi+aiyi, -Z:O.4+(Xi_8.5)2i
2

nomenon appears universally when nonisochronicity anénd the following chaotic predator-prey model that has been
natural frequency of the oscillators have a positive covariintroduced in Ref[6] to describe large scale synchronization
ance. The effect is of potential use for engineering applicaeffects in ecological systems:

tions because it allows for synchronization control: with an

appropriate choice of oscillator parameters it is possible to  x=x,—1.5-0.1x;y;, y=—b;y;+0.1x;y;—0.6y;z

either enhance or inhibit the synchronization in the en-
semble. Similar strategies can easily be used in living sys

- z=—10z,+0.1+0.6y;z . 3)

tems and therefore the effect is of considerable importance in

a variety of physical and biological applications.

Both systems have a free paramdigwhich is taken for

We consider a system ®f coupled oscillators each oscillator from the same statistical distribution. Despite
the fact that both models have a very similar attractor topol-
. 6 . . . .
% =F(x; i)+ —C x—x), i=1 N. 1 ogy [6], we find fundamental differences in their response to
RO+ j;\n (=) @) the interactionsee Fig. 1 In the ensemble of Rsler sys-

tems we observe the usual onset of synchronization where
In the absence of coupling each autonomous oscillafor the frequency disordes(e) is a monotonically decreasing
e R" follows its own local dynamicg; = F(x;,x;), whichwe  function of coupling strength. In contrast, the ensemble of
assume to be either a limit cycle or phase coherent chaofoodweb model$3) shows a totally different behavior. Here,
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2=(1+im)z-(1+ia)zfz+g S (z-2). ©)
J

Rewriting the complex variablez;; in polar coordinates
(ri,6;) and considering weak disorder, E) becomes

0.0 P 0.0 e
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.00 0.02 0.04 0.06 0.08 0.10 0.12 . €
: : ri:ri(l—rf)+ﬁri; [cog 6;— 6;)—1],
FIG. 1. Standard deviation of frequenciege) in a population
of 500 coupled oscillatorga) Rossler systent2) with a;=0.15 and . , € )
(b) foodweb model3). Oscillators have been coupled in theari- 0;=7mi— ayr; N E sin(6;— 6;). (7)
able,C=diag(0,1,0), with strengtla to either next neighbors in a !

ring with periodic boundariegsolid line), with global coupling Here, the natural frequenay, is determined by the dif-

(dashed ling or using approximatiol4) (dotted ling. Parameters . . .
b; were taken as uniformly distributed random numbers in the rangéerence of the amplitude independent rotation spgednd

0.97+0.025. The phase evolution of each oscillator was determined"! gmplltude dependent termnr that reflects the_non'SOCh_
by counting the maxima of; (t) [5]. ronicity or shear of phqse flow around the limit cyct_[é]. _
After relaxation of amplitudes the system can be written in
the generic form(4) with I';(6;— 6;)=sin(6,—6)+aj[1
—cos@—6)] andw;= 7 —«;.

with increasing coupling strengi(e) is first amplified and
synchronization sets in only for much larger coupling with a X . .
rrilaximal decoherence for ?/ntermediate \?alueSeoF:Wegde— Assuming for smalle_ that the oscillators rotate indepen-
note this counterintuitive increase of disorder with couplingd€ntly We can approxmatEchos(ej—ei)%Ejsm(aj—-a,hO.
strength asanomalous phase synchronizatiGhPS). Note, ~ 1hus, we arrive ati=ri(1-r)—er; and the amplitude, on
that here dephasing sets in without threshold, which differ@verage, is perturbed tf=1—e. As a result, the mean
totally from other coupling induced effects where instabili- frequency becomes a function of coupling strength
ties arise only when coupling exceeds a critical lgvdl].

We have tested the robustness of APS in a large number

of numerical simulations. We have found APS in the ecologi- It is important to note that Ed6) has to be understood as

C‘."ll mod_el(3) for_varlous coupling topolog|e(33ne_- and two- an effective equation that describes the amplitude and phase
dimensional lattices or global couplingnd for different en- d

. L namics of the specific systefit) with two characteristic
semblel SIZES. [n general, coupling mduged decoherence 'c%/nstants(ui and «;, which, in general, will both be func-
more distinct with a larger number of oscillatols, or next : . _

. ; tions of the system parametess=w(x;) and a;= a(x;).
neighborsm. It can already be observed in two coupled os- AL

. . . . . As a consequenceg; and w; are implicitly related ¢;

cillators. APS appears when disorder is realized by various” ;) and thus can not be treated as independent paran-
statistical distributions, largely independent of the width Of;'[grlsw,ld\fter simple calculation We obtain the sﬁandard F(;evia-
the dispersal, and it retains also in chains with linearly in—tion O'f the ensepmble frequencies in HE)
creasing parametets . Furthermore, the effect is robust to q '
the presence of noise and is independent of the initial condi- €
tions. o(e)=0,+—CoMw;,a;)+0(€?), 9

In the limit of weak interactions the dynamics of system To
(1) can be written in the form of phase equations

Qi(e)=n—ai(l-€e)=wt+eq. 8

where o, is the standard deviation ab;. Here, the fre-
quency disorder up to first order inincreases with the co-
S € variance of natural frequency and nonisochronicity of all os-
0i_wi+ﬁj;\‘i i (6;= 6), 4) cillators in the ensemble. Thus, we expect an anomalous
enlargement whewm; increases withw; .

For a small range of frequencies we can linearize the re-

where the interaction functiohi; is given by[2,12,1§ lation a;(e;) in first order
1 1

2

1 i=a(w)=ko+a. 10
Fumaij)zzj S Z(0py(d.80)d0. (5 a=a(w)=koi+a (0
- The coefficienkk measures the relation between nonisochro-

) . nicity and natural frequency. Now, E(®) becomes
Here, p;j(¥,660) describes the perturbation of the state of

oscillatori with phased due to the interaction with oscillator o(€)=(1+ke)o,+O(€?). (12)
j at phased+ A 6, and the sensitivity vectdZ;(J) gives the
phase shift of oscillator after the perturbation. Figure 2 illustrates these results with a numerical simula-

We first explain APS for an ensemble of globally coupledtion of ten coupled oscillator$6) where the disorder has
Landau-Stuart oscillatorsas a widely studied canonical been distributed according to E(LO). If k=0, the system
model for weakly nonlinear limit-cycle systeri2,4,12 shows the usual transition to synchronization, i.e., without

035204-2



RAPID COMMUNICATIONS

ANOMALOUS PHASE SYNCHRONIZATION IN . .. PHYSICAL REVIEW B57, 035204R) (2003

k=3 k=0 =-3

Ruol R R FIG. 2. Transition to synchronization in an

ensemble of ten globally coupled Landau-Stuart
oscillators (6) with a;=k(w;—{w;))+{w;) and
w;j=1+0.125. (Left) k=3, anomalous synchro-
nization; (centey k=0, usual synchronization;
(right) k=—3, enhanced synchronizatio€lop)
Standard deviation of the ensemble frequencies
o(€); numerical simulatior(solid line) and ana-

105
5

000 ="
0.

by s " Iytical result(11) (dashed ling Further indicated
o ‘0 w0 0 is the amplitude of the complex order parameter
R (dotted ling. (Bottom) frequenciesQ;(e) of
08 ) s s 08 1 ; s 08 ‘ : . individual oscillators.
0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3
[ € €
anomalous behavior. However, when nonisochronicity and xi=F(x ,xi) — €C(x,— &). (14)

natural frequency are relatek 0, the system exhibits APS

similar to the chaotic foodweb mOd@) The mechanism is Consequenﬂy' foe<<1 the frequency detuning of each os-
obvious from Fig. 2, where for smadithe frequencie$)i(€)  cillator i depends only on its own parametegs
change linearly withe (8), with a slope«;(w;) that depends
on the natural frequency. Thus kf>0 ande«; increases with Qi=Q(xi, e)~w(xi)+ ex(x;)+O(€?). (15
w; we first observe an effective enlargement of the frequency
differences[see Fig. 2a)]. In contrast, ifk<0, the opposite Here, x(x;) describes the frequency response of each oscil-
effect happens and synchronization is immediately stronglyator to the onset of interaction and by comparison with Eq.
enhanced. (8) it can be identified with the nonisochronicity; in
Despite the fact that Eq11) has been derived for very weakly nonlinear systems. Another way to derive ELp)
small e, APS prevails in the large coupling regime. As astems from Eq(4) where again using a random phase ap-
consequence, in Fig. 2 the synchronization threshgld proximation and after averaging we find fex1,
changes significantly witlk, a fact that is also reflected by
the amplitude of the complex order parameler |(e'%)| K(Xi):£ D ijszi-(Aa-i)dAe-i. (16
[2]. m jen; 27 )o ] ) !
In the case of only two phase oscillatd6s, the full tran-
sition to synchronization can be described analytically. After  Thus, in principle, the characteristies; and «; can be
relaxation of amplitudes in Ed.7) the phase differencé  calculated from the basic equatiofi$ and these are given as

=6,— 6, is determined by12] functions of the control parameters of the system
d=Aw—€[2 sing+Aa(cosgp—1)]. (12) FIS—R% xi—=> o(xi).«(xi) - 17
Then the mean frequency difference can be calculated ddere,CR' denotes the parameter space for each individual
AQ:((?)):(l/zwfzﬁdqb/('ﬁ)fl which results in oscillator andy;=(a;,b;, ...). Thecrucial fact is that, in
0 ' general,w(x;) and «(y;) are not functionally independent.
AQ(€)=VAw?+ 2eAwAa—4él. (13 In analogy to Eq(9) the frequency disorder is determined by

For Aa=0 this expression reduces to the well known beat
frequency of two coupled phase oscillators. However, when
both oscillators differ in nonisochronicity, E¢L3) exhibits 0.4
APS in very good agreement with the numerical simulations%
(Fig. 3.

After these explanations for universal limit cycle models 0.2
we return to the general, possibly chaotic, systémUsing
similar ideas, we can describe the frequency disorder in the , Lol tslal
regime of weak global coupling. First note that in the ab- %0 0.2 04 R )
sence of coupling the oscillators are rotating independently & k
of each other. With the onset of weak coupling we can as- g, 3. Left: Frequency difference of two coupled phase oscil-
sume that the oscillators remain to be independent. Thus, fQ4tors(6) as a function of coupling strength for different valueskof
€<1 and in the thermodynamic limit the ensemble averaggyhen Aa=kAw (w,;=1.2w,=0.8). Solid line: analytical result
is constant in time{x;)=§, and we can approximate the (13). Dotted line: numerical simulation. Right: synchronization
interacting system as a system Nfuncoupled oscillators thresholde, as a function ok. Solid line: analytical result. Circles:
with modified dynamics numerical result.

(|
4 6
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the covariance between;, and k; in the ensemble. If in the 25
whole disordered ensemble the parameters are distributed i

a subsetSCZ, then anomalous enlargement appears if 2
CoVF(S)]>0. L

Following these ideas, we now show that anomalous be- |,
havior can arise in the ensemble of f3ter system§2). Re- g
call that by varying only thé, anomalies are absetkig. 1). ©
Now we allow also for variations in the second parameters
a; . The problem then is to distribute the disorder in such a
way among system parameters thatand k; are both in-
creasing or decreasing functions pf. In the simplest sce-
nario we demand thad; andb; are linearly related by, 0, : 005 o
—(ay=k(b;j—(b)). Thus varyingk, we effectively try dif- €
ferent directions in parameter space. And indeed as is Shown gg_ 4. possibility of anomalous behavior in théster system
in (Fig. 4 we observe anomalous synchronization for \hich is achieved by simultaneous variation of two parameters.
>0, usual synchronization fdt=0, and enhanced synchro- piotted is the frequency disorder(e) as a function of coupling
nization fork<O0. strengthe in an ensemble of 500 globally coupled $2ter oscilla-

In conclusion, we have described the effect of anomalousors (solid lineg and using approximatiofil4) (dotted line. Pa-
phase synchronization in ensembles of nonidentical oscillarameter valued; are taken as in Fig. 1 anal=k(b;—(b))+(a)
tors where the usual transition to synchronization is stronglyvith (b)=0.97 and(a)=0.15.
modified, either enhancing or inhibiting synchrony. APS ap-

]E)earsthbe_calt,j[se tthe ir_:_tﬁ_ra(t:)tip n ptehrturbs the r:)sci!la_lttorsf aWg¥lated system parameters to speed up synchronization and to
rom their attractors. This brings the nonisochronicity o OS"compensate for the natural heterogeneity of all living envi-

C""”.‘“.O” Into play. Dlsorder enlargement occurs 'f.non'SOCh'ronments. On the other hand, there are situations where syn-
ronicity covaries with the natural frequency. APS is also rel- L o7
chronization is regarded as dangerous. For example, it is

evant in the large coupling regime and strongly controls thﬁmown that synchronization of fluctuating population num-
synchronization threshold. Thus, the effect is important fo bers | tronyl connected to the risk ofg Ilaolgal ecies e
applications. Similar to Fig. 4, an experimentalist can modify°c'S 'S 810 iqy hi h IS | 9 Ep 'es h'X-
the synchronization properties of a given system if he has thinction [10]. In this respect the anomalous synchrony inhi-
freedom to adjust individual oscillator parameters. bition in ecological models has important consequences for

Beyond its importance for the theory of synchronization,conservation ecology.

APS has wider implications for biological systems that are We thank B. Fiedler, G.V. Osipov, D. Pazand A. Pik-

typically characterized by large amounts of inherent disorder, ) .
In many cases strong synchronization is desirable for biopvSky for helpful discussions. Research was supported by

logical reason$3]. Therefore, it is quite possible that evolu- GEe,:Aman C}/}]Nfuftung(B.B.) and EU TrainingNetwork 158
tion has made use of APS by selecting individuals with cor-( M. and J.K).
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